AS-LIO: Spatial Overlap Guided Adaptive Sliding Window LiDAR-Inertial Odometry for Aggressive FOV Variation

T. Zhang, X. Zhang, Z. Liao, X. Xia, Y. Li LIESMARS, Wuhan University

IROS'24 ABU DHABI **Ve Sliding Window e FOV Variation**

Contribution

• A new metric **SOD** to assess the spatial overlap between LiDAR frame and pointcloud map, directly evaluating the impact of current FOV variation on pointcloud registration.

• An Adaptive Sliding Window to manage the continuous LiDAR stream based on SOD, allowing the LIO system to refine the trajectory with more dense states as necessary.

Motivation

- LiDAR-Inertial Odometry (LIO) excels in general low-speed and smooth motion scenarios.
- However, there still remain challenges in high-speed, intense motion scenarios, such as sharp turns.

More dynamic &challenging

From on-vehicle scene

To handheld/wearable

Motivation

- What challenges will intense motion bring to LIO?
 - For IMU: Increased **Non-linear Error** in state propagation
 - For LiDAR: Aggressive FOV Change will reduce the Spatial Overlap between LiDAR frame and pointcloud map

Motivation

- The dilemma in selecting time scale of LiDAR frame
 - Shorten time scale => Higher update frequency may suppress non-linear error, but insufficient constraints could increase **degradation risk**
 - Expand time scale => LiDAR constraints are sufficient, but the accumulation of prior error and motion distortion may **impact accuracy**

Different LiDAR frame length:				
50ms				
100ms				

Related Work

• Point by Point

[1] Z. Yuan, F. Lang, T. Xu, and X. Yang, Sr-lio: Lidar-inertial odometry with sweep reconstruction, arXiv preprint arXiv:2210.10424, 2022.

[2] D. He, W. Xu, N. Chen, F. Kong, C. Yuan, and F. Zhang, Point-lio:Robust high-bandwidth light detection and ranging inertial odometry, Advanced Intelligent Systems, vol. 5, no. 7, p. 2200459, 2023.

nt arXiv:2210.10424, 2022.

System Overview

- Frame-to-map SOD used to assess the impact of current FOV change on pointcloud registration
- Adaptive sliding window manages LiDAR stream and dynamically adjust the update step according to SOD.

Method

- 1. Spatial Overlap Degree (SOD)
 - \Rightarrow Aligned LiDAR frame hits the voxelized global map
 - \Rightarrow Appropriate expansion to enhance SOD robustness

Evaluation

SOD Evaluation

Method

2. Adaptive Slide Window

 \Rightarrow Adjust the shift_time according to SOD (Fixed frame_length)

Compute the seg_time of LiDAR frame base on seg_step as SOD decrease

$$= \left\lceil (1 - O_f^{M^*}) / seg_step \right\rceil + 1$$

Compute the shift_time of Slide Window

$$= frame_length * 2/seg_time$$

Maintain refinement with the echo_time

 $echo_time = (seg_time \le 2) ? 1 : seg_time$

Evaluation

Odometry Accuracy Evaluation

TABLE I END TO END ERRORS (CM)

	AS-LIO(Ours)	FAST-LIO2	Point-LIO
<i>indoor_1</i> (~100m)	2.25	28.19	_1
<i>indoor_2</i> (~100m)	20.88	14.58	95.78
<i>indoor_3</i> (~100m)	119.88	247.17	249.97
outdoor_1 (~300m)	14.38	\times^2	17.24
outdoor_2 (~300m)	91.64	227.88	230.57
<i>outdoor_3</i> (~300m)	112.98	426.47	256.40
outdoor_4 (~300m)	96.90	113.38	104.59
outdoor_5 (~400m)	4.41	202.51	94.37
<i>outdoor_6</i> (~500m)	393.31	483.04	410.77

 $\frac{1}{2}$ - denotes that the system severely diverged midway.

 2 × denotes that the system totally failed.

Evaluation

• Robustness Evaluation in Degradation Scenario

